新潟大学災害・復興科学研究所 共同研究報告書

空撮画像を用いた雪崩モデルパラメータ推定と気象・積雪条件の関係

研究代表者氏名 田邊 章洋 1)

研究分担者氏名 砂子 宗次朗¹⁾,明石 亜子²⁾,新屋 啓文³⁾

1) 防災科学技術研究所雪氷防災研究センター²⁾ 新潟大学大学院³⁾ 新潟大学災害・復興科学研究所

研究要旨

近年発達している雪崩の流動モデルは、雪崩事例の再現やハザードマップの流動域推定等の用途で活 用されているが、これらの目的のためには、適切なモデルの入力値を設定する必要がある.雪崩流動モデ ルは欧米を中心に発達してきたため、低温環境で発生する乾雪表層雪崩への入力値の基準は提案されて いるが、日本で厳冬期にも頻発する湿雪全層雪崩については、設けられておらず経験的な値が使われてい る.本研究では、雪崩流動モデルを用いた広域ハザードマップ作成を将来的に実施するため、その事前準 備として日本で発生する雪崩を再現するモデルパラメータの基準を作成する.まずUAV(無人航空機)等 の航空機により雪崩を撮影した空中写真を用いて、入力値を変化させた多数の流動計算を実施し、対象の 雪崩を再現する入力値を推定する.次に雪崩発生時の気象・積雪条件を推定し、雪崩モデルの入力値を気 象・積雪条件の関数として確立することを目指す.

A. 研究目的

近年雪崩の流動モデルは著しく発達しており, 欧米諸国ではこれらを用いた,流動領域を可視化 した雪崩ハザードマップが提案され始めている. このようなハザードマップの作成には,流動モデ ルのパラメータを適切に設定する必要がある.し かしながら,流動モデルは欧州を中心に発達して きた歴史的背景のため,欧米で問題となる乾雪雪 崩に対するパラメータ設定指針が示されている 一方で,日本で頻発する湿雪雪崩については知見 の蓄積が薄いのが現状である.

本研究の最終的な目標は、日本においても雪崩 の流動モデルを用いたハザードマップを作成す ることである.そのため、本研究課題では、流動 モデルの対象とされてきた乾雪表層雪崩と比較 して実績の乏しい湿雪全層雪崩に対する雪崩モ デルのパラメータ設定を明らかにすることを目 的とする.この目的のために、これまで記録され ている雪崩データ、特に全層雪崩を中心に収集す るとともに、対象とする雪崩を再現する最適なモ デルパラメータ推定を実施する.加えて、雪崩発 生時の気象条件から積雪変質モデルを用いて積 雪状況を推定し、雪崩モデルパラメータを気象・ 積雪条件の関数として表すことを目指す.これらの関係性を明らかにすることで,気象条件から最 適な雪崩モデルパラメータ設定の指針を示すこ とが可能となり,将来的な雪崩ハザードマップ作 成を可能にする.

B. 研究方法

本研究は主に二つのパートに分けることがで きる.一つ目は,再現対象とする雪崩事例の撮影 及びその解析,二つ目は雪崩事例を再現する雪崩 モデル入力値の推定である(図1).

図 1 研究の流れ. 雪崩事例を撮影および解析し, その事例に合う雪崩モデルの入力値を推定し,その 事例発生時の気象・積雪条件を推定する. 複数事例 集めることで, 流動モデルのパラメータを気象・積 雪の関数として表すことを目指す.

一つ目の雪崩事例の撮影及びその解析のため に,北陸及び東北地域を対象として冬季雪崩発生 時に速やかに現場に赴き、雪崩・積雪状況が経時 変化する前に UAV 空撮と積雪観測を実施する.こ のようにして取得した雪崩や、これまでに撮影さ れている雪崩事例,昨年度の研究課題(2023-8航 空写真を用いた積雪・雪崩堆積状況の判読と雪崩 モデルパラメータ推定;研究代表者:砂子宗次朗) で取得した航空機による積雪期の山岳域の空中 写真を用いて、雪崩事例の解析を行う.雪崩モデ ルで再現対象とするのは,流動範囲や距離,デブ リ厚さ等流動の結果であり、これらの定量的な値 は、空撮画像から SfM (Structure from Motion) 処 理にて作成されるオルソモザイク画像や数値標 高モデルを解析することで得られる.加えて,雪 崩モデルを実行するためには雪崩の発生区や初 期の厚さも必要となる.これらの情報も空撮画像 から同様に取得する.

二つ目の雪崩事例を再現する雪崩モデル入力 値の推定は、Fischer et al. (*J. Glaciol.*, **61** (229)、 875–888、2015)に倣って以下のように行う. 各事 例に対して、雪崩発生区、初期厚さを決定する. さらに推定したい入力値に適当な範囲の一様分 布を与え、ランダムに選択した雪崩モデルの入力 値 Θ_i を多数個用意する ($i = 1, \dots, N_c$). そして、そ れらを用いた数値計算を実施し、計算結果と雪崩 事例の解析結果の一致度合を定量的に比較する. 雪崩事例での評価変数を \hat{X} 、対応する数値計算か ら得られる変数を $X(\Theta)$ とすると、評価関数 α_X は以 下の2通りで表される:

$$\alpha_X = \exp\left(-\frac{1}{2}\left(\frac{X(\Theta) - \hat{X}}{\sigma_{\hat{X}}}\right)^2\right),\tag{1}$$

$$\alpha_X = \begin{cases} 1 \ X(\Theta) < \hat{X}, \\ 0 \ otherwise. \end{cases}$$
(2)

本研究では、 \hat{X} は流動距離、面積の一致度および逸 脱度、速度を表し、 $\sigma_{\hat{X}}$ は各 \hat{X} に対する揺らぎを表 す. α_X は数値計算が観測事例に近ければ1に、遠 ければ0に漸近する.速度以外は式(1)で評価 し、速度については空撮画像から決定することが 困難であるため、全層雪崩で一般的に言われてい る速度の最大値(30 m/s)に安全係数をかけて $\hat{X} =$ 33 m/sとして、式(2)を用いた.各評価対象変数 Xに対して、重み w_X 付きの総和 $\alpha(\Theta)$ をパラメータ Θ に対する評価関数とした:

$\alpha(\Theta) = \Sigma_X w_X \alpha_X.$

また, $X = (1 \pm 0.05) \hat{X}$ を代入して得られる値 α_{lim} を閾値として採用し, $\alpha(\Theta) > \alpha_{lim}$ なるパラメータ を最適パラメータとした. $N_c = 10^4$ 個のランダム に選択したパラメータに対して,最適パラメータ をからなる分布を最適パラメータ分布として,そ の雪崩事例を再現するための入力値とした.

雪崩の動力学モデルとして OpenFOAM をプラ ットフォームとする faSavageHutterFOAM を用い た (Rauter et al., *Geoscientific Model Development*,

2923-2939, 2018). faSavageHutterFOAM は
次元空間に埋め込まれた地表面上で深さ方向に
平均化した粒子流の質量,流れのせん断,鉛直方
向の運動量の保存則を数値的に解く手法である.
流動計算を実施するための初期の雪の厚さと発
生区の位置を空撮画像から決定し,摩擦係数μ,流
体抵抗係数ξ,および雪の取り込みに関するパラ
メータe_bを推定するパラメータとした.

C. 研究結果

本研究では、6 雪崩事例に対してパラメータ分 布推定を行った.図2にその一例を示す.

この事例は 2021 年 2 月 12 日に発生した面発生 湿雪全層雪崩で,初期積雪深 2 m,発生区の面積 2009 m²,落差 92 m の雪崩であった.目的変数と して,流下距離 169.5 m,デブリ面積は 30 grids とした.推定するパラメータの初期分布は,摩擦 係数 $\mu \in [0.1, 0.6]$,流体抵抗 $\xi \in [100, 40000]$,浸 食係数 $e_b \in [0, 100000]$ とした.

この事例では、 μ は 0.4-0.45 の範囲に多く分布 し、その範囲でピークを持つ分布に収束した. 一 方、 ξ は 15000-30000 の範囲でおおむね一様に分 布した. μ と ξ の散布図では、 μ が大きくなるにつれ て ξ も同様に大きくなる傾向がみられた.これは、

図 2 2021 年 2 月 12 日に発生した雪崩事例と, 推 定されたパラメータを用いた数値計算の重ね合わ せ (左図). 推定された最適パラメータ分布 (右図).

双方が底面抵抗則に関するパラメータであり,摩 擦係数が大きくなることで流動性が低下するの に対して,流体抵抗は逆数で定数として用いられ るため,流体抵抗が大きくなることで流動性を増 加する.定性的には,これらの競合によって,事 例を再現するのに最適なパラメータに収束する と考えられる. *e*bは初期に与えた範囲でほぼ一様 に分布しており,収束していない結果が得られた. ほかの変数と*e*bの散布図からは,相関がみられな かった.最適化されたパラメータを用いることで, 誤差を含みつつ,特に到達距離についてよく再現で きることを確認した.

同様のパラメータ推定を計6事例に対して実施 して、定性的に同様の結果が得られた.各事例で 推定された入力値をまとめて μ と ξ の間の関係を 調べると、個別の事例でみられるような関係が得 られた(図 3).

図 3 すべての事例における摩擦係数と流体抵抗 係数の関係. 白丸がベストなパラメータ,下端,上 端が分布の最低値,最高値を表す.

D. 考察

図2で示した事例では,最適と判断された入力 値は比較的多かったが,最適と判断された入力値 が1つまたは2つの事例も存在した.これらの事 例を確認すると,流動範囲や停止位置が立木によ ってコントロールされている様子があった.本研 究で使った流動モデルは深さ方向に平均してい るため,立木等の3次元的な障害物を考慮するこ とができていない.また,得られた分布はテール の長い分布になることもあったが,これは再現対 象とする変数の精度や,変数の不足によるものと 考えられる.これらに対しては,より精度の良い 空撮画像を取得することで,改善される可能性が ある.ただし流体抵抗は速度の二乗に比例する係 数であり,速度は空撮画像から推定できないため, より正確な推定のためには,タイムラプスカメラ 等の設置が必要となる.

図3で示すように、本研究の結果から摩擦係数 と流体抵抗係数の間に相関があることが示唆さ れた.今後事例数を増やすことで、入力値を与え る場合の指針とできる可能性がある.

E. 結論

雪崩事例の空撮画像を利用することで,事例を 再現する雪崩流動モデルのパラメータ分布を取 得した.得られたパラメータ分布は,特に摩擦係 数で収束する様子がみられ,摩擦係数と流体抵抗 の間で相関がみられた.今後は,雪崩事例を増や すことで,この相関関係をより明確に示すことを 目指す.

また、雪崩が発生した時の気象・積雪条件を整 理することで、気象・積雪条件の関数として流動 モデルパラメータを与えることができるように する予定である.

F. 研究発表

1. 論文発表

なし

2. 学会発表(学会名・発表年月・開催地なども記入)

明石亜子ほか「数値標高モデルから潜在的な雪 崩発生区を推定する手法の確立」雪氷学会北信越 支部研究発表会,福井,2024/6/1

田邊章洋ほか「観測事例を再現する雪崩モデルの最適モデルパラメータの比較」雪氷研究大会

(2024・長岡), 長岡, 2024/9/16-9/19

田邊章洋ほか「一冬期の積雪状況を反映させた 確率論的雪崩ハザードマップの試作」雪氷研究大 会(2024・長岡),長岡,2024/9/16-9/19

明石亜子ほか「数値標高モデルから潜在的な雪 崩発生区を推定する手法の確立」雪氷研究大会 (2024・長岡),長岡,2024/9/16-9/19

G. 知的財産権の出願・登録状況(予定を含む) なし