羽越災害地域における表層崩壊の発生条件に関する研究

研究代表者: 若月 強¹⁾ 研究分担者: 西井 稜子²⁾

1)防災科学技術研究所,水·土砂防災研究部門 2)新潟大学研究推進機構

研究要旨

新潟県五頭山地の花崗岩斜面では、これまで崩壊・土石流が繰り返されているが、その発生条件については十分な研究が行われていなかった.本研究では、土質試験を実施して崩壊跡地の土層の起源を検討すること、及び、表層崩壊の力学的発生条件を明らかにすることを試みた.その結果、崩壊地内外の 土層は表層に向かって風化が進行して諸物性値を変化させていた.ただし、岩石から土層への鉱物変質 は確認されたが、土層中の鉱物の変質は少ない.また、崩壊地内の土層は鬼マサと同様に、未崩壊土層 よりも粒度組成が大きくて強熱減量が小さく、相対的に風化が進行していないことから、崩壊後約50年 間で形成された崩壊地内の土層は、主に崩壊後の母岩由来の風化土であると考えられた.計測した物性 値を用いて斜面安定解析を実施した結果、この地域で表層崩壊が発生するためには、地下水位が地表面 近くまで上昇する必要があると考えられた.

A. 研究目的

新潟県の五頭山地では, 1967年の羽越豪雨によって, 1,600ヶ所に及ぶ表層崩壊とその崩土が流動化した土石流が発生し,甚大な災害となった. また,五頭山地の裾野には過去の土石流堆積物が堆積しており,それらの年代測定調査等から,少なくとも縄文時代以降,100~300年周期で土石流が発生してきたことが報告されている(高濱ほか,1997).したがって,五頭山地では,今後も崩壊・土石流が繰り返されると考えられるが,その発生条件については十分な研究が行われていない.

一方, 我々は昨年度(H29年)の本共同研究に おいて, 1967年羽越災害と1998年新潟豪雨災害 による五頭山地の複数の表層崩壊跡地を対象に, 現在までの約20~50年間の植生や土層の回復量 を検討した.その結果, 簡易貫入試験値(Nc 値) を基準とした場合の,軟弱土層(Nc < 5)と全土 層(Nc < 25)は崩壊後19年間で約13 cmと32 cm, 50年間で約24 cmと57 cmそれぞれ形成され たことが明らかになった.しかし,その土層の起 源については検討しなかった.

そこで、今年度は、五頭山地の花崗岩斜面にお いて、土質試験を実施して崩壊跡地の土層の起源 (風化か運積か)を検討すること、及び、表層崩 壊の力学的発生条件を明らかにすることを研究 目的とする.

B. 研究方法

(1) 土層と岩石の物性計測 図1に示すように五頭山地の西側斜面に位置す

る,1967年災害と1998年災害による各1斜面に

図1 調査地点. 鬼マサは G₃-0 地点で採取した. 土砂移動範囲は 1967 年羽越豪雨による.

	土粒子 の密度	単位体積重量			間隙率	間隙比	含水比	,飽和度	強熱 減量	飽和 透水係数		粘着力	せん断抵抗角		抗角	土壤硬度		簡易貫入 試験値
		乾燥	自然	飽和								自然	飽和	自然	飽和	平均	標準偏差	
	G_s	γd	γ nat	Y sat	n	е	w	S,	L,	K 15		C nat	C sat	ϕ_{nat}	ϕ_{sat}	Р		Nc
	g/cm ³	gf/cm ³	gf/cm ³	gf/cm ³	%		%	%	%	cm/sec	mm/hr	gf/cm ²	gf/cm ²	degree	degree	kgf/cm ²	kgf/cm ²	
Soil																		
G ₃ -F-t1 (未崩壊土層)																		
0.1 m	2.58	0.96	1.23	1.59	62.8	1.69	27.5	43.2	7.9	3.18×10^{-3}	114	-	-	-	-	2.5	0.5	1
0.4 m	-	1.32	1.63	1.82	49.3	0.97	21.9	62.6	7.2	6.57×10^{-4}	24	166.9	71.5	36.0	30.8	5.3	1.7	3
0.65 m	2.64	1.45	1.76	1.90	45.2	0.82	21.0	69.7	6.1	-	5	-	-	-	-	3.8	1.4	3
0.9 m	-	1.46	1.76	1.90	44.8	0.81	19.2	67.4	5.6	2.00×10^{-4}	7	99.2	46.7	42.1	35.9	8.7	3.5	4
1.1 m	-	1.51	1.83	1.94	42.7	0.74	21.0	73.4	5.8	4.93× 10 ⁻⁴	2	-	-	-	-	8.4	3.3	9
1.3 m	2.64	1.51	1.80	1.94	42.8	0.75	18.0	67.1	5.1	1.29× 10 ⁻⁴	5	149.0	71.9	47.2	38.2	32.5	77.3	9
1.6 m	-	1.53	1.81	1.95	42.1	0.73	17.6	67.0	4.9	4.88× 10 ⁻⁴	18	-	-	-	-	129.9	355.0	17
G ₃ -F-t2(未崩壊土層)																		
0.1 m	-	-	-	-	-	-	20.3	-	7.6	-	-	-	-	-	-	0.4	0.2	-
0.35 m	-	1.19	1.44	1.74	54.9	1.22	17.4	44.5	5.2	2.18× 10 ⁻³	78	-	-	-	-	3.1	1.8	-
0.6 m	2.64	1.59	1.82	1.99	39.7	0.66	14.0	55.8	3.7	9.61× 10 ⁻⁴	35	-	-	-	-	9.9	5.4	-
G ₃ -F-t3(崩壊約20年後, 19983	年崩壊地	内)																
0.05 m	-	-	-	-	-	-	13.1	-	4.3	-	-	-	-	-	-	1.7	-	-
G3-G-t1 (崩壊約50年後, 1967)	年崩壊地	内)																
0.05 m	-	1.16	1.31	1.72	55.6	1.25	11.6	26.0	4.1	5.00× 10 ⁻³	180	-	-	-	-	1.2	0.9	-
0.25 m	2.62	1.26	1.42	1.78	52.0	1.09	10.7	31.0	3.7	3.70× 10 ⁻³	133	-	-	-	-	0.9	0.4	-
0.35 m	-	1.70	1.83	2.05	35.8	0.56	8.3	37.1	2.8	3.22×10^{-3}	116	-	-	-	-	19.2	8.5	-
Hard grus																		
G ₃ -O 0.63 m	2.65	1.83	1.97	2.14	31.1	0.45	8.9	46.3	2.8	6.97×10^{-4}	25	-	-	-	-	28.6	12.5	-
Rock																		
G_3 -S, in situ unweathered rock	-	2.83	2.84	-	-	-	0.3	-	0.4	-	-	-	-	-	-	-	-	-
G ₃ -U, fluvial gravel_1	-	2.75	2.76	-	-	-	0.3	-	1.0	-	-	-	-	-	-	-	-	-
G ₃ -V, fluvial gravel	-	2.57	2.58	-	-	-	0.2	-	0.7	-	-	-	-	-	-	-	-	-

表1 土層及び岩石の物性値一覧

おいて,2018年5月に崩壊地内の土層と崩壊地脇 の未崩壊土層の諸物性をそれぞれ測定した.ここ で,1967年崩壊地内と1998年崩壊地内の土層は, それぞれ崩壊約50年後と崩壊約20年後の土層と 見なすことができる.具体的には,各土層におい てトレンチを掘り,0.1~0.3 m間隔で深度別に, 原位置試験及び100 cm³の採土缶とサンプル袋へ の試料採取による物性計測を実施した.また,付 近の露頭の鬼マサと岩石,河床礫を採取して物性 計測を実施した(図1).計測項目は,簡易貫入試 験値(*Nc* 値),土壤硬度,せん断強度定数(*c*, *ø*), 飽和透水係数,強熱減量,単位体積重量(乾燥・ 自然・飽和),含水比・間隙率・飽和度,土粒子密 度,鉱物組成である.

ここで, 簡易貫入試験値 (*Nc* 値) は, 斜面調査 用簡易貫入試験機 (筑波丸東製, 先端コーン径 2.5 cm)を用いた, 先端コーンが 10 cm 貫入するのに 要する打撃回数である. 土壌硬度は, 山中式土壌 硬度計 (大起理化工業 (株))を用いて測定した. この硬度計のバネの縮み *X* (mm) を, *P* = 100 *X* / (0.7952 (40-*X*)²)の式により換算した支持強度 *P* (kgf/cm²)で表した. せん断強度定数 (*c*, *φ*) は, 自然状態と飽和状態の値を現場ベーンせん断試 験(試験方法は、若月ほか(2005)に記載されて いる)によって測定した. 採土缶については, 採 取時の重量, 飽和透水係数(K, JIS A 1218の変 水位透水試験法による), 110℃で 48 時間炉乾燥 後の重量を順に計測した. これらの重量から採土 缶の重量を引いて,自然単位体積重量 (y_{nat}, gf/cm³) と乾燥単位体積重量(y_d, gf/cm³)を算出し, 含水 比(w, %)を求めた. また, サンプル袋の試料を 用い, 粒度組成 (JIS A 1204, シルト以下の細粒 分は沈降法・砂以上の粗粒分は篩分け法による), 土粒子の密度 (G_s, g/cm³, JIS A 1202), 800℃加 熱による強熱減量(Li, %, JIS A 1226)を計測し た. なお, 採土缶で採取していない地点の含水比 は、サンプル袋の試料を用いて測定した. 飽和単 位体積重量 (γ_{sat} , gf/cm³), 間隙率 (n, %), 間隙 比(e), 飽和度(S₁, %)はこれらの計測値から計 算した.ただし、岩石の単位体積重量については、 砂置換法により計測した. 鉱物組成は、株式会社 リガク製の MiniFlex600 を用いた, X 線粉末回折 法 (XRD) により測定した.1次鉱物はバルク試料 を不定方位法によって同定し,粘土鉱物は水簸法 により 2 µm 以下に抽出した粘土試料(非処理, エチレングリコール処理,および150, 350, 550°C

加熱処理)を定方位法によって同定した.

C.研究結果及び考察

(1) 土層構造と諸物性

土層の諸物性値一覧を表1に, 土層写真と深度 別の諸物性値を図2, 現場ベーンせん断試験(*c*, φ)の結果を図3にそれぞれ示す. 図2から, 各土 層は,未崩壊土層(G3-F-t1)で顕著であるように, 土壌硬度・貫入試験値・単位体積重量は表層に向 かって値が小さくなり, 強熱減量・間隙比・間隙

図3 ベーンせん断試験結果.

図 2 土層写真と諸物性. Slip plane は潜在崩壊面になり得る土層部位を示す.
G₃-F-t1 は主に原位置風化土, G₃-F-t2 は主に運積土をそれぞれ主とする.

図4 基盤岩と未崩壊土層のバルク試料の XRD チャート. Qtz:石英, Or:正長石, PI:斜長石, Bt:黒雲母.

図5 粘土鉱物の同定例(G₃-F-t1 90cm(潜在崩壊面)). K:カオリン鉱物, 14Å:バーミキュラ イト-クロライト中間種鉱物, V:バーミキュライト, Ch:クロライト, M: 雲母粘土鉱物. EG:エチレングリコール処理, 150℃, 350℃, 550℃: 各温度の加熱処理.

図6未崩壊土層における粘土鉱物(非処理)の深度方向の変化.鉱物記号は図4と同じ.

率・含水比は表層に向かって値が大きくなり,粒 度組成は表層に向かって細粒化する傾向が見ら れる.これらは,表層ほど風化していることを示 している.また,土壌硬度・貫入試験値の変化点 付近に潜在崩壊面が存在する(図2).せん断抵抗 角(*ϕ*)は深度方向の変化は少ないが,粘着力(*c*) と飽和透水係数は潜在崩壊面付近で最小値とな る(表1,図2,3).これらの傾向は,単位体積重 量と粒径などを反映したものであると考えられ る.

鉱物組成の結果を図 4,5,6 に示す. 岩石と未崩 壊土層のバルク鉱物を示した図4より, 岩石・土 層ともに一次鉱物として, 主に石英, 正長石, 斜 長石,黒雲母が含まれていることがわかる. 岩石 に含まれている斜長石と黒雲母は土層で大きく 減少しており,風化により変質したと考えられる. 土層深度による各鉱物の変質は少ない.図5に, 未崩壊土層の潜在崩壊面の粘土鉱物に対する、エ チレングリコール処理と加熱処理の結果を示す. 粘土鉱物として、バーミキュライト-クロライト 中間種鉱物,カオリン鉱物,雲母粘土鉱物,クロ ライト,バーミキュライトが含まれていることが わかる.これらは、黒雲母や斜長石の風化物と考 えられる.未崩壊土層の粘土鉱物を深度別に示し た図6より、一次鉱物と同様に粘土鉱物を深度に よる変質は少ない.以上より,岩石中の黒雲母や 斜長石が風化して,バーミキュライト-クロライ ト中間種鉱物,カオリン鉱物,雲母粘土鉱物など が生成されたが、土層中の鉱物の変質は少ないこ とが明らかになった.

以上より,主に花崗岩中の黒雲母や斜長石の粘 土鉱物への変質(すなわち化学的風化)により土 層が形成される. 土層中では,表層に向かって強 熱減量が増加しているように若干の化学的変質 はあるが,鉱物を変質させるほどではない. 土層 中では,主に生物擾乱や重力変形などによるゆる み(すなわち物理的風化)が進行して,単位体積 重量を減少させるなど,諸物性値を変化させたと 考えられる.

(2) 崩壊跡地の土層の起源

崩壊地内の土層(崩壊約20年後と約50年後), 未崩壊土層,鬼マサの粒度組成と強熱減量をそれ ぞれ比較した.風化が進行すると土層は細粒化す る.強熱減量は,鉱物の結晶水や化学結合水,有 機物等の含有量を反映し,一般に風化により粘土 化が進行すると値が大きくなる.ここで,崩壊地 内の土層の値が未崩壊土層の値に近ければ,崩壊 地内の土層は崩壊地周囲の未崩壊土層が移動堆 積した運積土であり,逆に母岩由来の鬼マサに近 ければ,崩壊後の風化土であると判断する.なお, 崩壊地内の土層(特に,崩壊50年後の土層)は, 黒色化した植物片が混ざるなどにより,未崩壊土 層の表層部と土色が類似している場合があり,そ の起源を観察だけで推定するのは極めて困難で ある(図2の土層写真).

図7に各土層の粒度組成の違い,図8に各土層 の乾燥単位体積と強熱減量の関係をそれぞれ示 す.図7から,崩壊地内の土層の粒径は,周辺の 未崩壊土層よりも粗粒であり,鬼マサに近い粒径 であることがわかる.なお,崩壊地内の土層のG₃-F-t2_0.6mの粒径は未崩壊土層とほぼ同じである が,この土層は強風化岩盤直上の土層であり(図 2),崩壊地内の土層と同様に細粒化が進んでいな

図7崩壊地内の土層と未崩壊土層, 鬼マサの 粒度組成の違い.

図8崩壊地内の土層と未崩壊土層, 鬼マサにお ける乾燥単位体積重量と強熱減量の関係.

図9斜面安定解析の結果. 黒丸がG₃-F斜面.

いことを示している.一方,図8によると,同じ 乾燥単位体積重量のとき,崩壊地内の土層や鬼マ サは,未崩壊斜面の土層よりも強熱減量が小さい 領域にプロットされる.

以上より,崩壊地内の土層は,鬼マサと同様に, 未崩壊土層よりも粒度組成が大きくて,強熱減量 が小さく,相対的に風化が進行していないことか ら,崩壊後約 50 年間で形成された崩壊地内の土 層は主に崩壊後の母岩由来の風化土であると考 えられる.

(3) 崩壊発生に必要な地下水位

 G_3 -F 斜面(崩壊深 0.9 m, 斜面勾配 42°)の未崩 壊土層 G_3 -F-t1 で得られた物性値を使用して, 斜 面安定解析により,崩壊発生条件,すなわち斜面 が不安定化する地下水位を求めた.斜面安定解析 には以下の無限長斜面の式(Skempton and DeLory, 1957)を用い, F_s (安全率) = 1の限界条件で計算 した.

$$F_{S} = \frac{c + (\gamma - m \cdot \gamma_{w}) \cdot z \cdot \cos^{2} i \cdot \tan \phi}{\gamma \cdot z \cdot \sin i \cdot \cos i}$$
(1)

ここで、 γ :土の単位体積重量 (gf/cm³)、 γ_{π} :水の 単位体積重量 (gf/cm³)、z:土層深 (cm)、i: 斜面勾配 (°)、m:地下水位をあらわすパラメー タである.土層深 (z) は重力方向に計測した土層 の厚さであり、法線方向に計測した土層厚 (x) と は、 $z = x / \cos i$ の関係がある.mは、地表面から の地下水面までの深さを z_w とすると, $m = (z - z_w) / z$ と表すことができ, すべり面より浅部に 飽和側方流が発生していない場合の値は 0, 地下 水面が地表面に達した場合の値は 1 となる. c, ϕ 値は潜在崩壊面と考えられる G₃-F-t1_0.9 mにお ける, 自然状態(図9で *nat*を付記)と飽和状態 ($m \ge 0$, 図9で *sat*を付記)の値をそれぞれ使用 した. γ も同様に自然状態と飽和状態の値を使用 した.

安定解析の結果を図9に示す.この図からG₃-F 斜面は m = 0.83のとき不安定化することがわか る.すなわち,この斜面で崩壊が発生するために は、地下水位が地表面近くまで上昇する必要があ ると考えられる.

D. 結論

1967 年羽越災害と 1998 年新潟豪雨災害による 五頭山地の花崗岩斜面の崩壊跡地を対象に, 土質 試験を実施して崩壊跡地の土層の起源(風化か運 積か)を検討すること,及び,表層崩壊の力学的 発生条件を明らかにすること試みた.その結果, 以下が明らかになった.

(1)崩壊地や未崩壊地の土層は表層に向かって 風化が進行し,諸物性値を変化させていた.ただ し,岩石から土層への鉱物変質は確認されたが, 土層中の鉱物の変質は少ない.すなわち,主に花 崗岩中の黒雲母や斜長石の粘土鉱物への変質(す なわち化学的風化)により土層が形成され,土層 中では表層に向かって主に生物擾乱や重力変形 などによるゆるみ(すなわち物理的風化)が進行 して,単位体積重量を減少させるなど,諸物性値 を変化させたと考えられる.

(2) 崩壊地内の土層は, 鬼マサと同様に, 未崩壊 土層よりも粒度組成が大きくて, 強熱減量が小さ く, 相対的に風化が進行していないことから, 崩 壊後約 50 年間で形成された崩壊地内の土層は, 主に崩壊後の母岩由来の風化土であると考えら れた.

(3) 計測した物性値を用いて斜面安定解析を実施した結果,この斜面で崩壊が発生するためには,地下水位が地表面近くまで上昇する必要があると考えられた.

一般に、花崗岩地域の崩壊跡地の土層の回復に は数 100 年を要すると言われているが、本研究で は初期の約 50 年間の土層の起源を追ったに過ぎ ず、さらに長期間の土層形成過程の解明が必要で あろう.また、地形発達や防災の観点からは、五 頭山地の斜面において、崩壊が発生する降雨条件、 すなわち地下水位が地表面近くまで到達するの に必要な雨量を検討する必要があろう.

E. 研究発表

学会発表

- 西井稜子・若月 強・青木慎弥・竹田尚史, 1967 年羽越豪雨による表層崩壊地の植生回復, 第5 7回日本地すべり学会研究発表会, 2018 年 8 月, 新潟市.
- 西井稜子・若月 強,2018,1967年羽越豪雨によ る群発崩壊と林齢の関係,2018年日本地形学 連合秋季大会,2018年11月,つくば市.
- 若月 強・西井稜子・吉原直志・榎本壮平,新潟 県五頭山地の花崗岩斜面における崩壊後 50 年 間の土層回復量-1967 年羽越豪雨と 1998 年新 潟豪雨の崩壊地調査-,第57回日本地すべり 学会研究発表会,2018 年 8 月,新潟市.
- **F. 知的財産権の出願・登録状況(予定を含む)** なし